

梅合金保

不锈钢和高合金钢的气体保护电弧焊

材料决定保护气体

母材金属和填充金属的快速发展需要多种多样的焊接 保护气体来保驾护航。无论TIG焊还是MIG/MAG焊都面临 同样的挑战。

TIG 焊

氩气是TIG焊接最常用的保护气体。氩气里添加氢气可明显提升奥氏体不锈钢的焊接性能,但氢含量超过2%的混合气体仅适用于能够实现高速度焊接的自动TIG焊接应用。氩气里加入少量氮气的混合气体被用于TIG焊接双相不锈钢,目的是在焊缝的显微组织中保有足够数量的奥氏体组织。同样道理,在焊接全奥氏体钢的保护气体中加入氮气可以确保满足低δ-铁素体含量限值的规定。但焊接双相不锈钢的保护气体里不能含有氦气。

MIG/MAG 焊

MAG焊奥氏体不锈钢常用含2.5% CO₂的富氩混合气作为保护气体。也可以用氧气代替CO₂与氩气混合,但这种混合气体获得的焊缝会呈现较重的表面氧化情况。在混合气体里再添加15%的氦气所组成的三元混合气体,在很多应用实例中已经被证明,对提升焊接效率非常有效。这点对焊接双相钢和全奥氏体钢尤其明显。

背面保护气体

法规常要求采用氮氢混合气体,即所谓的"成形气体",作为焊缝背面保护气体。其中的氢气成分能为抵挡残留氧的侵蚀提供更多的保护作用。野外施工会比车间作业要求更高含量的氢气。最新的法规规定,双相钢焊接的背面保护气体里不能含有氢气。

不锈钢和高合金钢TIG焊接用保护气体,按EN ISO 14175分类

保护气体名称		ISO 14175 类别	主要应用场景 和适焊金属
普氩	Welding argon 4.6	l1	
高纯氩	Ar 5.0	l1	所有高合金钢和不锈钢,一普通碳素钢和低合金钢
氦气	Helium 4.6	12	
梅合金保氢2型	Inoxline H2	R1	手工TIG焊接奥氏体钢
梅合金保氢5型	Inoxline H5	R1	- 自动TIG焊接奥氏体钢
梅合金保氢7型	Inoxline H7	R1	
梅合金保氢20型	Inoxline H20	R2	等离子切割奥氏体钢的 切割气体
梅合金保氢35型	Inoxline H35	R2	
梅合金保优选型	Inoxline He3 H1	R1	TIG焊接奥氏体不锈钢钢管
梅合金保双相N1型	Inoxline N1	N2	双相不锈钢,超级双相不锈钢
梅合金保双相N2型	Inoxline N2	N2	
梅合金保双相重型	Inoxline He15 N1	N2	
梅合金保镍速1型	Inoxline He15 H2 N	Z	镍基合金

奥氏体钢MAG焊接用保护气体,按EN ISO 14175分类

保护气体名称		ISO 14175 类别	主要应用场景 和适焊金属
梅合金保碳2型	Inoxline C2	M12	
梅合金保重型	Inoxline He 15 C2	M12	高合金钢, 包括各类不锈钢
梅合金保氧2型	Inoxline X2	M13	
梅合金保三元型	Inoxline C3 X1	M14	不锈钢和镀锌钢板
梅合金保镍速2型	Inoxline He30 H2 C	Z	镍基合金

背面保护气体,按EN ISO 14175分类

保护气体名称		ISO 14175 类别	混合气体类型
梅管保5型	Forming Gas H5	N5	N ₂ / H ₂
梅管保8型	Forming Gas H8	N5	N ₂ / H ₂
梅管保12型	Forming Gas H12	N5	N ₂ / H ₂
梅管保25型	Forming Gas H25	N5	N ₂ / H ₂
梅合金保氢2型	Inoxline H2	R1	Ar / H ₂
氩气(普氩或高纯氩)	Welding argon	l1	Ar

应用说明

材料科学背景知识

奥氏体钢含有近20%铬和大约10%镍。原则上,奥氏体不锈钢的典型金相组织里含有5%至8%之间的铁素体。常用的奥氏体不锈钢有:304 (1.4301)、321 (1.4541)、316Ti (1.4571)。奥氏体镍铬合金钢可以通过添加合金元素(通常加钛),或者控制特别低的碳含量(LC级别),使得本身稳定来抵抗晶间腐蚀。

双相钢具有很强的耐腐蚀性能,尤其是抵御含氯介质的腐蚀,同时还有很高的力学性能。最常用的双相钢是:2205 (1.4462)。双相钢的金相组织呈现两相混合状态,其中铁素体相含量在50%左右。超级双相不锈钢具有更强的耐点蚀能力。

全奥氏体钢的铁素体含量最高不超过 2%,这让它对热裂纹更敏感。但另一方面,全奥氏体钢的耐腐蚀和耐热性能也更强。由于极低的铁素体含量,这些材料没有磁性。典型的全奥氏体钢有: 316L (1.4435)、317LMN (1.4439)。

镍基合金能满足1000℃以上高温环境下最苛刻的耐腐蚀要求。这些材料不能被归入钢材类别中,而是被归入2字开头的材料编号家族内。焊接这些合金时,必须保证极高的清洁度。

TIG焊还是MAG焊?

由于焊缝中的非金属夹杂物和气孔数量都非常少,TIG焊能获得极高质量的焊缝。但是TIG焊的焊接速度相对较慢,而且热输入较高。作为TIG焊的一个变种,等离子焊能保证稳定的焊接过程,主要应用于全自动焊接。MAG焊常用于焊接角焊缝。但在全自动焊接应用中,这种焊接方法也越来越多地被用于焊接承受较高应力的焊缝。

脉冲技术

在各种TIG焊方法中,轨道焊常采用脉冲技术以获得完美的焊缝,尤其在难焊位置的焊接更是需要脉冲技术。 另一方面,MAG焊采用脉冲技术的目的是,即使在小电流焊接情况下,也能减少飞溅,或获得无飞溅的焊接。与熔深密切相关的工艺安全性也获得提高。现代焊接电源技术已能根据保护气体定制程序,允许焊接参数在较大范围内调节。高合金钢焊接一般推荐采用脉冲焊。

背面气体保护

焊接不锈钢和高合金钢的时候,背面气体保护是必不可少的。原则上要求根部焊道的残留氧量必须小于20ppm。焊缝变色的允许程度取决于该零部件的用途。小口径管道吹扫时,出口孔径的匹配很重要。对于大直径管道来说,背面保护气体由辅助装置传送到焊缝处。重要的是保证有足够长的预充气吹扫时间。

药芯焊丝

高合金钢的焊接大多采用实心焊丝。但也有用药芯焊丝的情况。这里,主要采用金红石型的药芯焊丝。由于焊渣盖面有助于形成非常光滑的焊缝,因此几乎没有必要做酸洗,也几乎不会出现飞溅问题。用于常规焊接位置的慢渣与用于立焊位置的快渣之间存在明显差别。金属粉芯焊丝用在某些特殊的应用场合,例如容器内部。在这些场合里焊渣有可能引发一些问题,因此需要加以避免。金属粉芯焊丝能比实心焊丝更快获得喷射电弧。

技术中心——创新之源

梅塞尔在位于德国、瑞士和匈牙利的技术中心研 发焊接和切割领域的新技术。这些技术中心为创新项 目以及客户演示和培训课程提供理想的条件。

气体产品库——包罗万象又条理清晰

梅塞尔供应品种广泛的气体产品,而且所提供的服务还远不止气体本身:它涵盖为每个应用挑选合适的气体,清晰的、以应用为导向的产品命名方式,以及不断引入新的混合气体以反映最新技术趋势。

培训课程——永远与时俱进

为了充分发挥气体产品的功能,我们为您提供工艺培训,告诉您如何使用这些气体。我们的培训课程形象地揭示了不同保护气体在焊接上的用途,并解释如何安全地操控它们。这也包括气体的储存和如何安全运输少量的气体。当然,信息和针对贵厂实情的培训材料也是服务的一部分。

C10_CN_062013

专业的现场咨询——就在您需要它的地点与时机

根据您的特定应用的具体环境,我们会告诉您该 如何优化您工艺的效率和质量。结合工艺研发,我们 帮助您解决疑难问题和改进工艺。

成本分析——快捷高效

我们乐于帮助您分析现有工艺,提供工艺优化方案,为工艺改进提供技术支持,并与初始状态进行比较—因为您的成功就是我们的成功。

梅塞尔集团中国总部 Messer China Corporate Office

上海市苏虹路33号

虹桥天地3号楼203室 (201106) Room 203, Building 3, The hub,

33 Suhong Road

Shanghai, 201106, P. R.C.

电话: +86 21 2312 6666

传真: +86 21 5221 8801 communications@messer.com.cn

www.messergroup.cn